QUANTITATIVE PLATELET DISORDERS

Maryam Bagherian M.D. Assistant Professor Iran University of Medical Sciences Novel approaches to ITP treatment Demystifying HIT New strategies in TTP

NOVEL APPROACHES TO ITP TREATMENT

ITP Biology with Regard to Therapeutics

New data on the burden of ITP

Outcomes

During average follow-up (2.3 vs 2.6 years), compared with matched population, the ITP cohort had a higher rate of:

- Bleed-related hospitalization (aRR 4.2 [95% CI 3.5–4.9])
- Venous TE (aRR 1.7 [95% CI 1.4–2.1])
- CNS arterial TEs (aRR 1.2 [95% CI 1.0–1.5])
- Non-CNS arterial TEs (aRR 1.5 [95% CI 1.1–1.9])
- Malignancies (RR 1.6 [95% CI 1.3–2.1])
- Autoimmune conditions (RR 4.0 [95% CI 2.3–7.1])
- Infections (RR 3.1 [95% CI 2.6–3.8])
- New onset cognitive impairment/dementia (RR 1.7 [95% CI 1.3-2.2])
- Death: 21% ITP vs 10% matched population. HR for death 1.5 (95% CI 1.2–1.7) after adjusting for potential confounders

Fatigue Venous thromboses Heavy menstrual bleeding Unmet medical need Unmet medical need **Unmet medical need** • Fatigue affects HRQoL and has significant Adults with ITP have greater risk of TE vs ITP may cause HMB, which can impact QoL⁶ socioeconomic consequences1 general population4 Estimated prevalence of HMB in patients Fatigue affects 22–45% of patients with ITP² Estimated VT incidence in ITP population: with ITP is 6-55% at diagnosis and 17-79% 0.41-0.67 per 100 person-years⁵ during disease⁶ • Causes not fully understood1 HMB may cause iron deficiency or IDA⁶ Management Management³ Management · Support from ITP patient groups No standard treatment guidelines⁵ Limited options that do not permanently · Psychosocial support includes: Treatments include:⁴ impair fertility: · Antithrombotics e.g. warfarin, Regular exercise Antifibrinolytics ± hormonal therapy Healthy eating LMWH, DOAC Options that permanently impair fertility: · Reducing stress Anticoagulants + antiplatelet Endometrial ablation; hysterectomy⁶ · Balancing home-work-life • Iron supplementation for iron Talking to family/friends

deficiency/IDA7

New data on first-line treatments for ITP

Treatment (N) Study information		Outcomes		
8 RCTs with participants ≥16 years receiving dexamethasone (n=427) and prednisolone (n=404)	Systematic review and meta-analysis Search of RCTs comparing dexamethasone 40 mg/d for 4 days per cycle to prednisolone 0.5–2.0 mg/kg/d for 4 weeks	 Dexamethasone yielded higher IR rates vs prednisolone (RR 1.21, 95% CI 1.09–1.34; I²=52%, n=5 studies) No improvement in ER, DR and PR No significant difference in IR, DR or PR observed between 1–2 vs 3 cycles of dexamethasone Higher frequency of AEs in dexamethasone vs prednisolone arm (n=141 vs n=71 events) n=20 grade ≥3 AEs (dexamethasone n=7; prednisolone n=13) Dexamethasone was discontinued in n=4 patients; prednisolone was discontinued in n=5 patients 		

New data on approved TPO-RAs for ITP (1)

Treatment (N)	Study information	Outcomes	
• Retrospective study in China¹ • Children with primary ITP with ≥12 weeks of eltrombopag treatment and follow-up, receiving study drug between January 2020 and December 2022¹		 OR rate*: 67%; CR rate: 55.3%; R rate: 11.7%; DR rate†: 56.3%; TFR rate‡: 60.0%; relapse rate⁵: 36.2%; NR ratell: 33.0%¹ DR and TFR rate were significantly higher in patients with newly diagnosed vs persistent/chronic ITP: DR, 68.8% vs 45.5% (p=0.017); TFR, 76.7% vs 35% (p=0.003)¹ Relapse rate significantly higher in patients with persistent/chronic vs newly diagnosed ITP: 57.6% vs 16.7% (p=0.000)¹ AEs in n=14 patients; no SAEs reported; no AEs led to treatment discontinuation¹ Patients aged 2-6 months (n=5): CR, DR and TFR rates 100%; no patients relapsed; AEs in n=3 patients¹ 	
Eltrombopag (n=78) vs SOC [¶] (n=40) ²	 Prospective PINES trial in the USA (phase III)² Children aged 1—<18 years with ITP <3 months and PC <30 x 10⁹/L followed for 1 year² Data collected May 2019 to January 2024² 	 Primary outcome: platelet response** achieved by 63% in eltrombopag arm vs 35% in SOC arm (n=108; p=0.0054)² Rescue therapy received by 18% vs 38% in eltrombopag arm vs SOC arm (n=117; p=0.02)² Composite endpoint*** at 12 weeks achieved by 66% vs 44% in eltrombopag vs SOC arms (n=117; p=0.03)² Grade ≥3 AEs at 12 weeks: Eltrombopag, n=9 AEs and n=6 SAEs; SOC, n=3 AEs and n=3 SAEs² 	

^{*}Total of patients who have achieved CR and R; †PC ≥30 x 10°/L and at least doubling of the baseline count at 6 months; ‡PC ≥50 x 10°/L and the maintenance time ≥6 months after discontinuation of eltrombopag and its accompanying treatment; §patients need rescue treatment including the infusion of platelet and IVIG infusion, and using glucocorticoid either during or after discontinuation of eltrombopag treatment; ||PC <30 x 10°/L, or less than a twofold increase in the baseline count, or bleeding events when the patient had received an appropriate dose of eltrombopag for 8 weeks. §Investigators choice of one of three standard therapies (prednisone, IVIG or anti-D); **≥3 of 4 PCs >50 x 10°/L during weeks 6–12 without rescue treatment; ***PC ≥30 x 10°/L and two-fold increase and no bleeding. AE, adverse event; CR, complete R; DR, durable R; ITP, immune thrombocytopenia; NR, no R; OR, overall R; PC, platelet count; PR, persistent R; R, response; SAE, serious AE; SOC, standard of care: TFR, treatment-free remission.

. New data on approved TPO-RAs for ITP (3)

Treatment (N) Avatrombopag (N=190 safety; n=18 effectiveness)¹ • ADOPT study (phase IV)¹ • Adult patients ≥18 years with primary ITP in Europe¹ • Data cutoff 2 May 2024¹		Outcomes	
		 Primary outcome: Cumulative number of weeks with PC ≥30 x 10⁹/L: mean (SD) 45.9 (10.8) weeks; median (min, max) 50.4 (5.9, 51.4) weeks¹ Cumulative number of weeks with PC ≥50 x 10⁹/L: mean (SD) 43.5 (12.7) weeks; median (min, max) 47.2 (0.0, 51.4) weeks¹ PC ≥30 x 10⁹/L and PC ≥50 x 10⁹/L for ≥8 consecutive weeks: n=17¹ All AEs / SAEs: n=29 patients / n=15 patients (n=2 discontinued treatment)¹ TRAEs: n=10 patients Improvement in HRQoL associated with treatment: Mean change in FACIT-F score at month 12 of -4.0¹ 	
Avatrombopag (N=72) ²	 REAL-AVA 2.0 retrospective chart review study² Adult patients with primary persistent (n=21) or chronic ITP (n=51) in the USA who initiated treatment with avatrombopag between July 2019 and June 2024² Data cutoff 11 October 2024² 	 Primary outcome: 90% of patients achieved or maintained a PC ≥30 x 10⁹/L (median time to response 9.0 days) or ≥50 x 10⁹/L (median time to response 13.0² days); 85% achieved or maintained a PC ≥100 x 10⁹/L (median time to response 21.0 days)² Mean duration of response for all patients was >1 year at each PC threshold² Mean (SD) durability of response for all patients was 90% (17%) at PC ≥30 x 10⁹/L, 85% (22%) PC at ≥50 x 10⁹/L and 71% (29%) at PC ≥100 x 10⁹/L² 79% of patients on concomitant steroids at study initiation (n=15/19) discontinued their use after avatrombopag initiation; n=2/3 patients receiving concomitant immunosuppressants discontinued their use after avatrombopag initiation² 	

Switching from Eltrombopag/Romiplostim to Avatrombopag

New data on approved TPO-RAs for ITP (2)

Treatment (N) Study information		Outcomes		
Switch from eltrombopag or romiplostim to avatrombopag (N=60; n=38 switched from eltrombopag and n=22 switched from romiplostim) ^{1,2}	 Prospective study in the USA (phase IV)^{1,2} Patients receiving prior TPO-RA for ≥90 days with any PC response^{1,2} Patients switched due to ineffectiveness (28%), convenience (63%) and AEs (13%)^{1,2} 	 TEAEs in 25% (n=15/60); serious TEAE in 10% (n=6/60)¹ PCs improved or maintained at 90 days¹ Significant improvement in satisfaction (TSQM domain score mean difference from baseline to day 90/EOS): for effectiveness, convenience and global satisfaction (all p<0.001); for side effects (p=0.01)¹ Post hoc analysis (n=55): Median TSQM scores increased for convenience, effectiveness and global satisfaction for eltrombopag switchers, and for convenience and global satisfaction for romiplostim switchers at Day 90 regardless of baseline dose² 		

Novel non-TPO-RA agents

Sovleplenib

SYK inhibitor²²

Rilzabrutinib BTK inhibitor²³ Avatrombopag (paediatric use)

TPO-RA²⁵

Mezagitamab

CD38 inhibitor²¹

ESLIM-01²²

Phase III

Randomized 2:1 sovleplenib (n=126) vs placebo (n=62) 300 mg QD

DRR: 48% vs 0% (p<0.0001)*

ORR (all p<0.0001)

- ≥1 PC ≥50 x 10⁹/L: 71% vs 16%[†]
- Two consecutive PCs ≥30 x 10⁹/L and double from BL: 73% vs 6%
- PC ≥30 x 10⁹/L and increased ≥20 x 10⁹/L from BL: 75% vs 22%[‡]

TEAEs: 99% vs 85%

Grade 3/4 TEAEs: 25% vs 24%

Most common TEAEs: URTI, COVID-19, ↑ blood LDH

GI toxicities: Nausea 1.6% vs 3.2%; vomiting 1.6% vs 1.6%;

diarrhoea 1.6% vs 0%

Thromboembolic events: 0%

LUNA 2^{23,24}

Phase II

Rilzabrutinib (N=71) 400 mg BID

Pooled outcomes²³

• Durable response: 28%§

• Overall response: 41%

• Complete response: 35%¶

Long-term outcomes²⁴

- n=8/17 discontinued ≥1 or ↓
 concomitant ITP therapy
- Visits reaching median PC of ≥50 x 10°/L: 90%

All AEs: 86%²³ (LT data: 81%)²⁴ TRAEs: 61%²³ (LT data: 41%)²⁴

Grade ≥3 AEs: 17% (all TRAEs

grade $1/2)^{23}$

Most common TRAEs:

Diarrhoea; nausea; headache;

fatigue; vomiting²³

Thromboembolic events: 0%23,24

AVA-PED-301²⁵

Phase III

Randomized 3:1 avatrombopag (n=54) vs placebo (n=21) 10 or 20 mg QD (age dependent)

- DPR: 27.8% vs 0% of patients (p=0.0077)**
- PR: 81.5% vs 0% of patients (p<0.0001)*[†]
- PC ≥50 x 10⁹/L: 48.9% vs 1.2% of weeks (p<0.0001)*[‡]
- PC ≥50 and ≤150 x 10⁹/L: 29.2% vs 1.2% of weeks (p<0.0001)*[‡]

TEAEs: 92.6% vs 76.2%

TRAEs: 13.0% vs 4.8%

Most common TEAEs:

Petechiae; epistaxis; bruising;

headache

Thromboembolic events: 0%

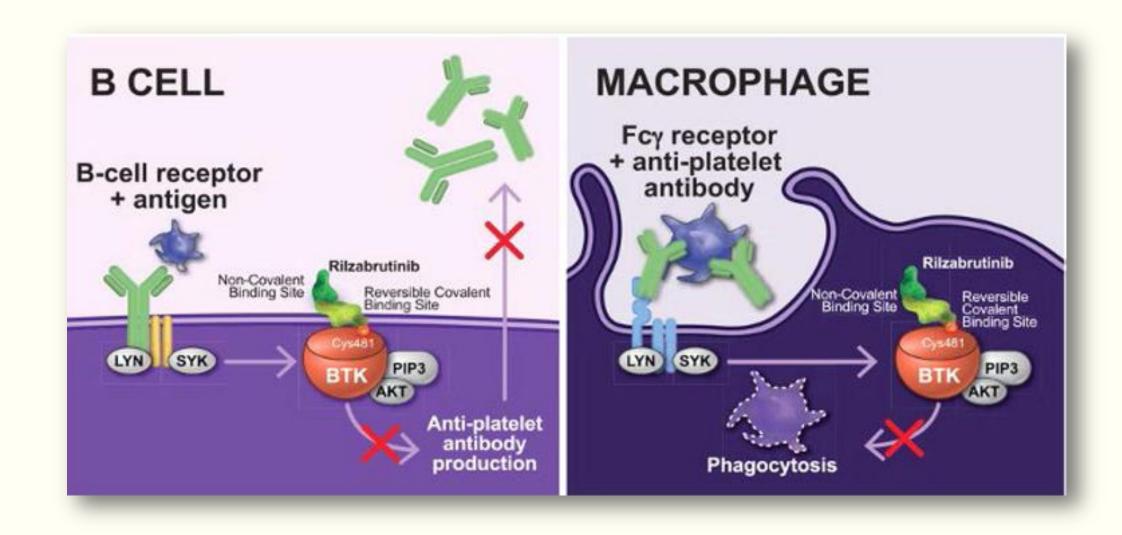
NCT04278924^{21,26}

Phase II

Randomized mezagitamab (n=28) vs placebo (n=13) 100, 300 or 600 mg QW

Mezagitamab 100/300/600 mg vs placebo

- PR: 66.7/62.5/90.9% vs 23.1%*§
- Complete PR: 55.6/50.0/81.8% vs 0%*||
- Clinically meaningful PR: 66.7/75.0/90.9% vs 30.8%*¶
- Haemostatic PR: 40.0/25.0/100% vs 0%***

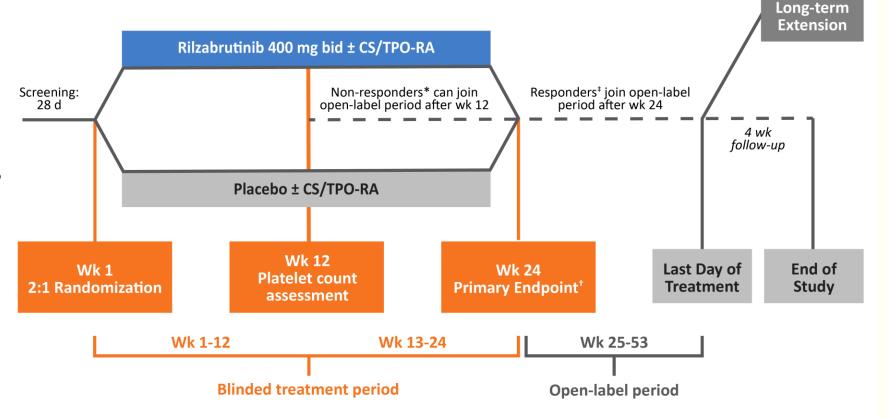

TEAEs: 67.9% vs 69.2%

TRAEs: 32.1% vs 38.5%

Grade ≥3 TEAEs: 17.9% vs

23.1%

Rilzabrutinib



LUNA 3

Figure. LUNA3 Phase III Study Design

Primary ITP Patients

- Persistent or chronic
- n=194 adults aged ≥18 y with primary ITP >3 mo
- n=30 adolescents aged
 12-17 y with primary ITP
 6 mo

^{*}Non-responder: platelet counts <30×10⁹/L or <20×10⁹/L above baseline on two consecutive visits.

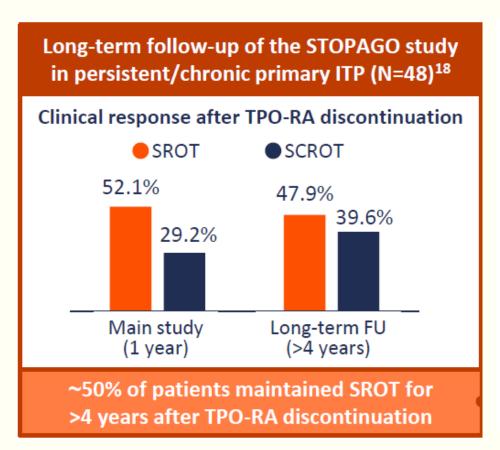
[†]Primary endpoint: platelet counts ≥50×10⁹/L for ≥8 of the last 12 wk of the 24-wk blinded treatment period without rescue medication.

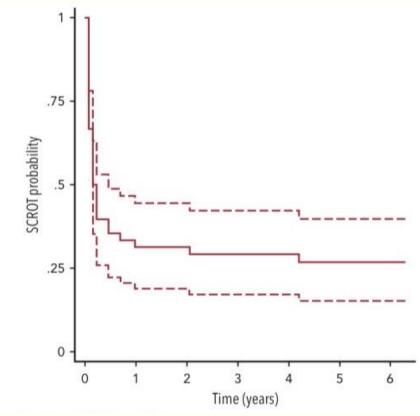
 $^{^{\}dagger}$ Responder: platelet counts ≥50×10 $^{\circ}$ /L or ≥30×10 $^{\circ}$ /L and at least doubled from baseline at ≥50% of visits without rescue therapy during the last 8 wk of the open-label period.

LUNA 3

Outcomes

- Primary outcome: Durable response* at week 25 was met (23% difference between rilza vs placebo (95% CI 16–30%; p<0.0001))¹
- Duration of PR†: significantly longer all patients and responders receiving rilza vs placebo (p<0.0001 for both)¹
- Significantly less rescue therapy use associated with rilzabrutinib vs placebo (p=0.0007)¹
- Similar proportion of AEs and SAEs¹
- Significant improvement in physical fatigue from baseline to week 13 (p=0.0114) and week 25 (p=0.0003) with rilza vs placebo (assessed by LS mean change)²
- Improvements in multiple measures of ITP-specific HRQoL at week 25 observed with rilza vs placebo (symptoms, bother-physical health, activity, psychological health, social activity and overall HRQoL)²


Tapering TPO-RA


Treatment (N) Study information		Outcomes		
TPO-RA (N=48) ¹	 Open prospective, multicentre trial in France¹ Adult patients with persistent/chronic primary ITP who achieved CR* for >3 months on a TPO-RA¹ Enrolment between September 2017 and February 2020¹ 	 Achieved SROT[†] at 12 months: n=25/48¹ Followed-up for a median of 5 years (range 4–6.3 years)¹ Achieved SROT[†] and SCROT[‡] at the end of follow-up: 47.9% (n=23/48) and 39.6% (n=19/48), respectively, in the ITT group¹ Relapsed during extended follow-up: n=2 (no bleeds)¹ 		
Prospective STIP trial in the Netherlands to determine rate of SROT ^{§2} • Adults with persistent/chronic ITP (77% with chronic ITP; 41% received ≥2 prior treatment lines) ²		 Primary outcome: SROT at 1 year after tapering (n=25): 23.6%² Patients with SROT had higher PCs and received lower doses of romiplostim² Median time to relapse 58 days² Only mild bleeding reported during/after tapering in 41.2% (n=7/17) in patients who relapsed² 		

STOP & GO: RFS after discontinuing TPO-RA in chronic ITP

- Prospective, multicenter study
- French ITP reference center network
- ➤ Persistent or chronic ITP & had achieved a platelet count >100 × 10₃/L for at least 2 months on
- Either eltrombopag or romiplostim. After

NEW STRATEGY IN TTP

Table 3 Etiology-based subclassifications and clinical diagnoses of TMA

Etiology-based subclassification	Etiology	Underlying cause	Clinical diagnosis	Important clinical findings
ADAMTS13-deficient TMA	Severe decrease in ADAMTS13 activity	ADAMTS13 gene abnormality	Congenital TTP (Upshaw-Schulman syndrome)	ADAMTS13 gene abnormality
		Anti-ADAMTS13 autoantibodies	Immune-mediated TTP	Severe decrease in ADAMTS13 activity and
				the presence of anti-ADAMTS13 autoan- tibodies
Infection-induced TMA	Infection	STEC (e.g., Escherichia coli O157)	STEC-HUS	STEC infection established by blood or stool culture
		Neuraminidase-secreting Streptococcus pneumoniae	Pneumococcal-associated HUS	Proven pneumococcal infection
Complement-mediated TMA	Complement abnormality	Hereditary complement abnormalities (e.g., factors B, H, and I; C3; and membrane cofactor protein)	Atypical HUS	Genetic complement factor abnormalities; Low C3 and normal C4 levels (not neces- sarily observed in all patients with atypi- cal HUS)
		Anti-factor H antibodies		Proven presence of anti-factor H antibodies
Coagulation-mediated TMA	Coagulation abnormality	Mutations in diacylglycerol kinase ϵ and thrombomodulin genes	Atypical HUS (possibly)	Proven genetic mutations
Secondary TMA	Unknown	Autoimmune diseases	Connective tissue disease–associated TMA, etc	SLE, scleroderma, or other connective tis- sue disorders
		Hematopoietic stem cell transplant	Hematopoietic stem cell transplantation- associated TMA	Unresponsive to platelet transfusion Hemolysis (accompanied with, e.g., low haptoglobin levels)
		Organ transplant (e.g., kidney, liver)	Post-organ transplant TMA	Thrombocytopenia of unknown etiology and hemolysis (accompanied with, e.g., low haptoglobin levels)
		Malignant tumors	Tumor-associated TMA	Frequently diagnosed in patients with malignant lymphomas, stomach cancer, and pancreatic cancer
		Pregnancy	Pregnancy-associated TMA, HELLP syndrome	HELLP syndrome typically develops at ≥ 30 weeks of gestation in combination with hypertension
		Drugs (e.g., mitomycin)	Drug-induced TMA	Medication prescription
Other TMAs	Unknown	Other	TTP-like disorders or similar	Classic TTP pentad

Thrombotic Thrombocytopenic Purpura

Identifying aTTP is crucial for initiation of an appropriate therapeutic strategy

OR

SEE aTTP†—Diagnosis determined through clinical assessment

CLINICAL ASSESSMENT

Thrombocytopenia (<100 × 10°/L)

Evidence of MAHA§

Relatively preserved renal function

RISK ASSESSMENT TOOLS

Available risk assessment tools include:

- PLASMIC score
- French score

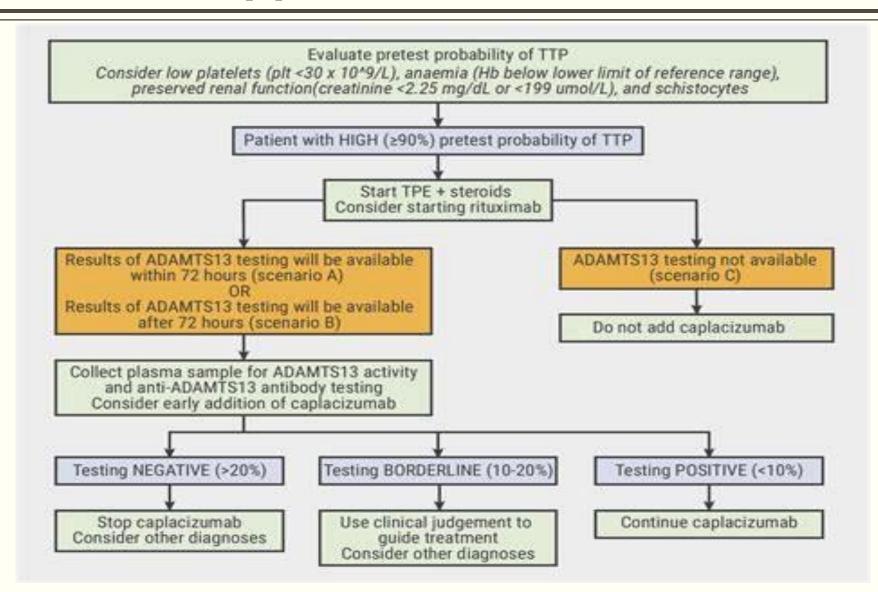
The higher the risk assessment score the more likely patients have severe ADAMTS13 deficiency and aTTP

Risk Assessment Tools

Parameters	French score	PLASMIC score
Platelet count	<30×10 ⁹ /L (+1)	<30×10 ⁹ /L (+1)
Serum creatinine	< 2.26 mg/dL (+1)	< 2.0 mg/dL (+1)
Hemolysis		+1
Indirect bilirubin > 2 mg/dL or reticulocyte count > 2.5% or undetectable haptoglobin		
No active malignancy in previous year		+1
No history of solid organ or stem cell transplantation		+1
PT-INR < 1.5		+1
MCV < 90 fL		+1
Likelihood of severe decrease in ADAMTS13 activity (<10%)	0: 2%	0-4: 0-4%
	1:70%	5: 5-24%
	2: 94%	6-7: 62-82%

The French and PLASMIC scores range from 0-2 to 0-7, respectively

These two scoring systems are used in patients suspected of having thrombotic microangiopathy. This table was adapted from reference [23]


PT-INR prothrombin time-international normalized ratio; MCV mean corpuscular volume; ADAMTS13 a disintegrin-like and metalloproteinase with thrombospondin type 1 motifs 13

TTP Burden REVOLUTIONIZED

- TTP was formerly associated with a poor prognosis, with a mortality rate > 90% in untreated patients
- Survival rate to approximately 80%
- High levels of serum creatinine and ADAMTS13 inhibitor titers of ≥2 BU/mL are poor prognostic factors in patients with ADAMTS13 activities < 10%
- Cardiovascular death

Algorithmic Approach

Treatment

- Plasma exchange is the only historically accepted treatment modality for iTTP
- The FFP volume is 1.0–1.5times the patient's circulating plasma volume
- ADAMTS13 supplementation
- Removal of ADAMTS13 inhibitors
- Elimination of UL-VWFMs unsusceptible to proteolytic cleavage

- Corticosteroids are expected to suppress autoantibody production.
- Caplacizumab significantly reduced the time to platelet count normalization when administered concomitantly with plasma exchange and corticosteroid therapy.

Caplacizumab

START CABLIVI*—Consider early administration of CABLIVI in combination with PEX and immunosuppressive therapy

Recommended diagnostic and management strategy for acute events with access to ADAMTS13 results within 7 days

aTTP diagnosis based on high clinical suspicion (pretest probability ≥90%)

Low or intermediate clinical suspicion of aTTP (pretest probability < 90%)

Start PEX + immunosuppressive therapy Consider STARTING CABLIVI*

Consider starting PEX + immunosuppressive therapy

Who should not start CABLIVI?

- CABLIVI is contraindicated in patients with a previous severe hypersensitivity reaction to caplacizumab-yhdp or to any of its excipients
- Withhold CABLIVI treatment 7 days prior to elective surgery, dental procedures, or other invasive interventions

SUPPORT WITH ADAMTS13—ADAMTS13 test results inform treatment decisions

<10%

CONTINUE CABLIVI or consider STARTING CABLIVI* 10%-20%

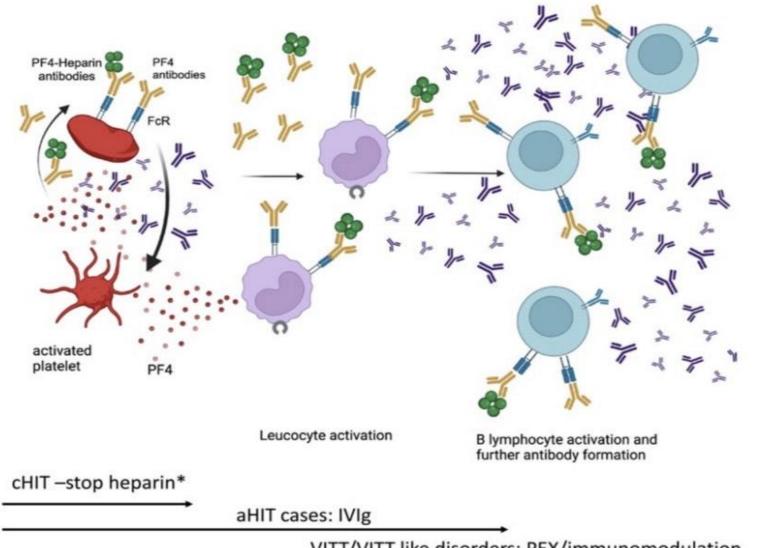
Use clinical judgment to guide treatment and consider other diagnoses >20%

STOP CABLIVI and consider other diagnoses

Caplacizumab therapy

- ✓ Caplacizumab 10 mg first day, intravenously
- ✓ 15 min before the start of plasma exchange
- ✓ Second dose 10 mg subcutaneously after the end of the plasma exchange
- 10 mg subcutaneously after each daily plasma exchange
- Once-daily 10-mg doses subcutaneously for 30 days
- If ADAMTS13 activity remains < 10% after the 30 days, caplacizumab may be continued for an additional 28 days
- Should be discontinued immediately if ADAMTS13 activity ≥10% and TTP is ruled out

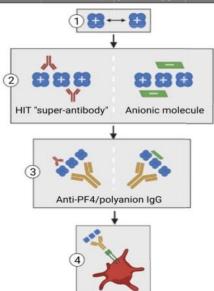
DEMYSTIFYING HIT


> Type 1: nonpathogenic, non-platelet activating

Type 2: heparin dependent, platelet activating

Type 3: heparin independent, platelet activating

HIT Mechanism

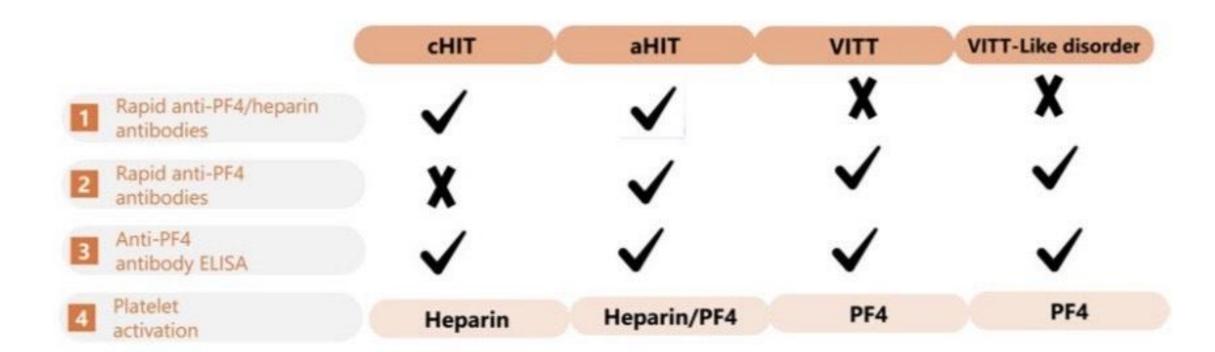

VITT/VITT like disorders: PEX/immunomodulation

Autoimmune HIT (aHIT)

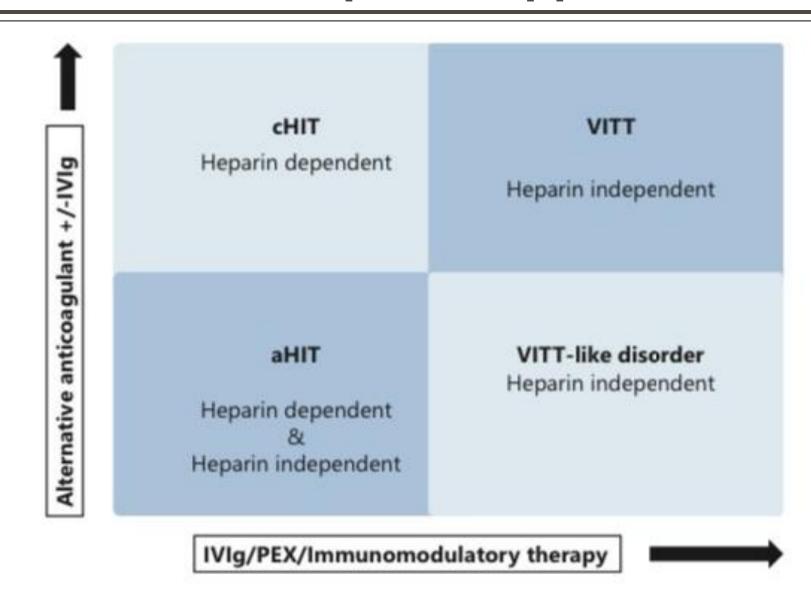
What is autoimmune HIT?

- Rarely, the clinical manifestations of HIT can develop via heparin-independent platelet activation.
- Autoimmune HIT (aHIT) refers to any HITrelated platelet count fall that begins or persists in the absence of heparin.^{70,71}
- Six subtypes of aHIT have been described.
- Notably, spontaneous HIT has been reported to occur most commonly after knee replacement or infection.⁷¹

Pathophysiology

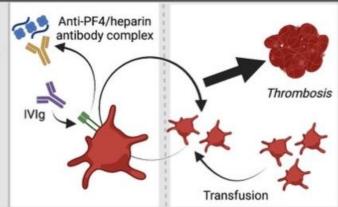

Severe HIT Flush heparin HIT with overt DIC HIT with severe Caused by thrombocytopenia heparin flush (<20×109/L) and DIC Fondaparinuxassociated HIT **Delayed onset HIT Autoimmune** HIT with Begins or worsens HIT (aHIT) fondaparinux after heparin without heparin stopped Spontaneous HIT **Persisting HIT** Persistence >1 HIT that occurs week after heparin without heparin stopped exposure

(1) Positively charged PF4 tetramers repel one another. (2) In aHIT, a non-heparin molecule overcomes this electrostatic repulsion, bringing individual PF4 tetramers together to form large multimolecular PF4 complexes. The exact non-heparin molecule able to perform this action is debated and may vary based on aHIT subtype, but proposed examples include HIT "super-antibodies" that bridge two PF4 tetramers and/or highly anionic molecules which could include chondroitin sulfate (released from joint cartilage in joint surgery), polyphosphate, and/or nucleotides such as DNA and RNA. 70,71 (3) The PF4 complexes then serve as antigens bound by anti-PF4/polyanion IgG, which (4) trigger activation of platelets and other cell types.


Principles of diagnosis & management of aHIT syndromes are *the same as classical HIT,* with some unique considerations:

When to suspect? Diagnosis Management Avoid heparin Thrombosis and Immunoassay + Use non-heparin Thrombocytopenia Functional assay + anticoagulation Functional assay may show platelet that is otherwise unexplained Experts recommend activation in the absence of heparin, even in the absence of consideration of high-dose but a non-heparin control is not heparin exposure IVIg in severe cases.70,71 performed in all laboratories.

Diagnostic antibodies


Mechanism & Therapeutic approach

Additional treatment considerations

Intravenous immunoglobulin (IVIg)

- Hypothesized to competitively inhibit binding of anti-PF4/heparin antibody to platelet FcR.⁶²
- Can be considered in cases of severe and/or refractory thrombosis or thrombocytopenia.

- Routine use NOT recommended due to concern it may "fuel the fire" and increase thrombotic risk, particularly arterial
- Can be considered in patients with active bleeding or prior to urgent procedures.^{51,5}