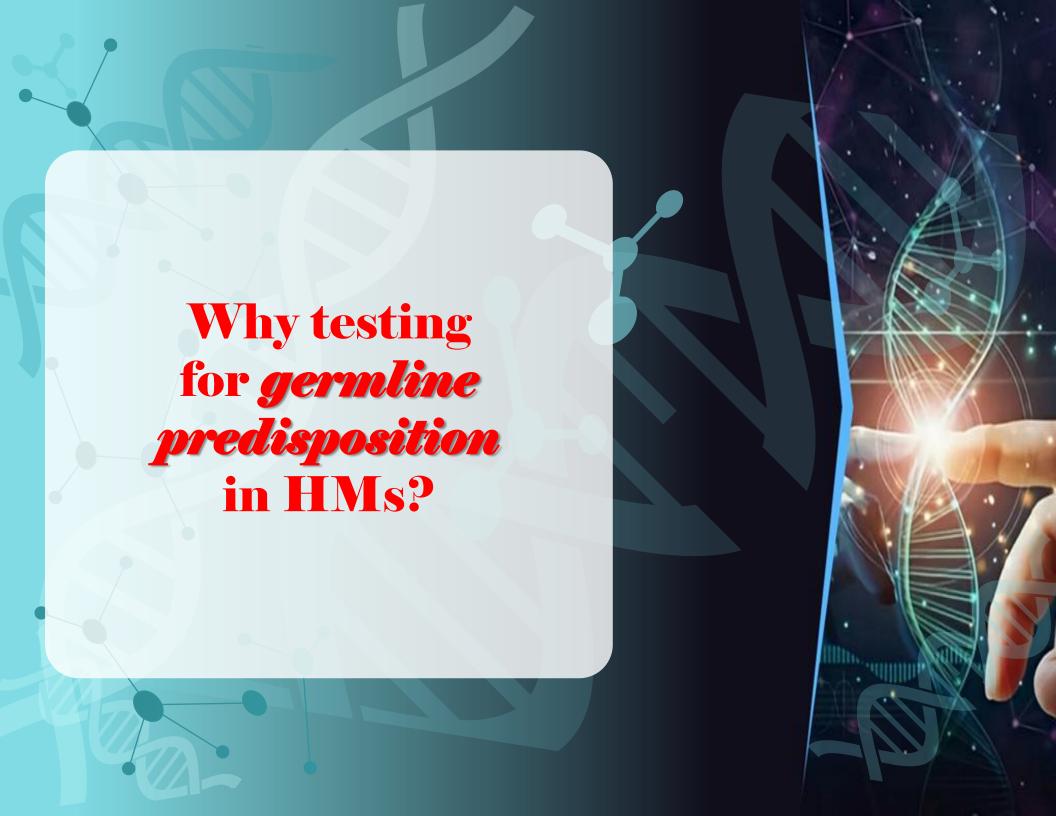
Germline predisposition in hematologic malignancies;

A new strategy era

Dr. Arezou Sayad, FULL Professor of Medical Genetics Shahid Beheshti University of Medical Sciences

### HISTORY


RY

- In 1969, Li and Fraumeni...
- Twenty-one years later, the germ line transmission of a mutant TP53 gene...
- The landmark paper of Li and Fraumeni:



"cancer predisposition revolution"







It can guide therapeutic decisions, appropriate genetic counseling, familial screening, and surveillance

- Somatic mutation
- At least 7% of all MDS taken to related allogeneic HSCT carried <u>P/LP</u> variants (2022), and 19% of all MDS patients have germline mutation (2021).
- MDS patients showed that germline predisposition occurred in patients of any age, even in those aged>70 years.
- 1120 patients with pediatric cancer showed that 8.5% had germline mutations in cancer-predisposing genes and only 40% had a family history of cancer.
- In a cohort of SAA patients who underwent HSCT, P/LP germline variants were identified in 16.5% (121/732) of the patients (2022).

### Germline predisposition

- therapeutic modifications, eg. FA reduced-intensity conditioning is required as inherent hypersensitivity to genotoxic
- GATA2 deficiency patients: various infectious complications during therapy
  - Donor-derived malignancies have been reported in myeloid neoplasms with germline predisposition for CEBPA, DDX41, and GATA2
  - challenges in Stem cell donors carrying pathogenic germline variants: stem cell mobilization or delayed engraftment failure

## 2022 European LeukemiaNet:

Germline predisposition should be considered in patients with any HMs, irrespective of age



# Universal screening of individuals for germline predisposition of myeloid neoplasms is not currently the standard of care, but

American Society for Clinical Oncology recommends screening for hereditary cancer syndromes when:

personal or familial history of a hereditary cancer

screening test results can be accurately interpreted

outcomes of screening contribute to diagnosis or assist in managing patient or family members at risk

Nordic guidelines recommend germline predisposition testing when:

personal or familial history of a hereditary cancer

Gene variants are suspected to be germline based on somatic testing (VAF)

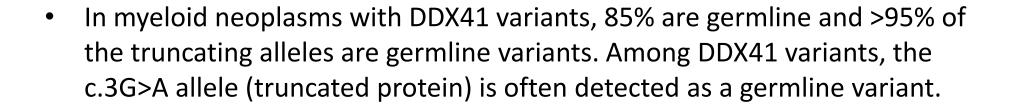
MDS/AML is diagnosed in patients aged <50 years in the presence of chromosome 7 aberrations

Screening

### Which Sources?

blood, bone marrow, saliva, buccal swabs, all contain hematopoietic cells and contaminated with malignant cells

hair bulbs and Nail (Low con. DNA)


cultured **skin fibroblasts** from a skin punch biopsy

|  |                                                  | Pros                                                                  | Cons                                                                  | Reference(s)                                  |
|--|--------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|
|  | Cultured skin fibroblasts                        | Confirmed germline                                                    | 4-6 weeks turnaround time                                             | DeRoin et al. 2022                            |
|  |                                                  | High yield for downstream<br>analysis                                 | Procedure needs training.                                             |                                               |
|  |                                                  | No donor cell contamination<br>for patients who had HCT               | ~5% culture failure                                                   |                                               |
|  | Primary skin fibroblasts<br>(washed extensively) | No culture time                                                       | Possibility of blood<br>contamination                                 | NA                                            |
|  | Hair bulbs                                       | Confirmed germline                                                    |                                                                       | Trottier & Godley 2021                        |
|  | riair outos                                      | Confirmed germine                                                     | Procedure is painful for patients.                                    | Frottier & Godiey 2021                        |
|  |                                                  | No culture time                                                       | Patients treated with<br>chemotherapy may have<br>alopecia.           |                                               |
|  |                                                  |                                                                       | Low DNA yield                                                         |                                               |
|  | Peripheral blood                                 | DNA can be extracted<br>directly from the sample.                     | Not true germline                                                     | DeRoin et al. 2022, Trottier<br>& Godley 2021 |
|  |                                                  | High DNA yield                                                        | Somatic reversion and CH                                              |                                               |
|  |                                                  | Sample collection is done<br>regularly and can be easily<br>obtained. | can give inconclusive results.                                        |                                               |
|  | Bone marrow aspirate                             | Patients undergo bone                                                 | Not true germline                                                     | Godley 2023                                   |
|  | - contract and                                   | marrow biopsy and sample                                              | Contains hematopoietic cells                                          | ,                                             |
|  |                                                  | can be easily obtained.                                               | >95% donor cell<br>contamination for patients                         |                                               |
|  |                                                  |                                                                       | who had HCT                                                           |                                               |
|  | Bone marrow-derived MSCs                         | Nonhematopoietic;<br>confirmed germline                               | Requires special culture<br>conditions for cells to grow              | Mastrolia et al. 2019                         |
|  |                                                  | Adherent to plastic, enabling<br>MSC culture                          | Growth of MSC cultures<br>varies among patients.                      |                                               |
|  |                                                  | independently of isolating                                            | Primary culture failure rate                                          |                                               |
|  |                                                  | hematopoietic cells for<br>cytogenetic analysis                       | 28%                                                                   |                                               |
|  |                                                  | cytogenetic analysis                                                  | Multilineage differentiation<br>can cause loss of gene<br>expression. |                                               |
|  |                                                  |                                                                       | Cell senescence occurs at                                             |                                               |
|  |                                                  |                                                                       | passage 5, which limits<br>DNA yield.                                 |                                               |
|  | Saliva                                           | DNA can be extracted                                                  | Somatic mutations and CH                                              | Godley 2023                                   |
|  | Sairva                                           | directly from the sample.                                             | present in the sample                                                 | Godiey 2029                                   |
|  |                                                  |                                                                       | compromise the results.                                               |                                               |
|  |                                                  | Not painful for patients; least                                       | Not true germline                                                     |                                               |
|  |                                                  | invasive<br>High DNA yield                                            |                                                                       |                                               |
|  | Fingernails and toenails                         | Noninvasive                                                           | DNA extraction from nails                                             | Kakadia et al. 2018                           |
|  |                                                  |                                                                       | needs additional sample                                               |                                               |
|  |                                                  |                                                                       | processing.                                                           |                                               |
|  |                                                  |                                                                       | Low DNA yield                                                         |                                               |

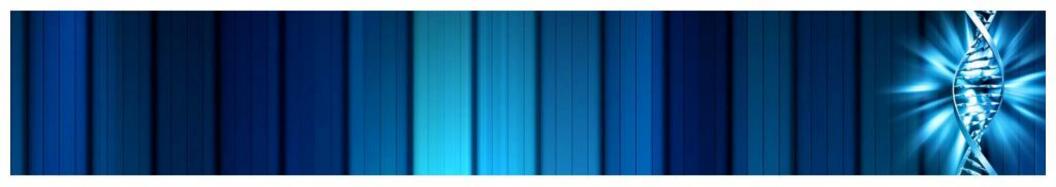
### Which genetic testing methods?

- The selection depends on regulatory aspects, costs, and availability.
- targeted gene NGS panels, WES, WGS.
- NHS: the implementation of WGS as a standard care practice for all
  patients with acute leukemia (A paired tumor and germline WGS, which
  facilitates identification of a greater number of germline variants) (Capturing).
- Because some germline predisposition alleles exist in noncoding regions, such as promoters (e.g., ANKRD26), deeply intronic enhancers (e.g., GATA2), and RNA encoding genes (e.g., TERC), these regions need to be included in these assays, which may require augmentation through specific probes. The ever-expanding gene list complicates clinical testing.

### Con...



In different ethnic groups: Japanese and Korean individuals are enriched with c.1496dup, whereas in Northern European c.3G>A and c.415\_418dup are more common (2023).


• The presence of **multiple DDX41 variants**, especially those with high VAF, suggests a germline mutation.

# Con...

 In the case of RUNX1, the same variants have been identified in both somatic and germline settings within HMs, highlighting the challenge of determining when to use germline confirmation.

Germline RUNX1 variants are distributed throughout the gene, necessitating sequencing the entire gene. These variants include missense, nonsense, frameshift, and whole-exon deletions or duplications.

 Germline ANKRD26 variants are located in the 5'UTR of c.-116 to c.-134, leading to overexpression of ANKRD26 owing to the failure of regulation by transcription factors RUNX1 and FLI1; thus, this region should be included in analyses



• In Shwachman Diamond syndrome (SDS): Biallelic pathogenic variants of SBDS (within exon 2, c.258+2 T>C and c.183\_184delinsCT). Challenges: SBDSP1 pseudogene (shares 97% seq), cis or trans.

|         | Predisposition to<br>hematopoietic        |                                                                                                                           | Predisposition to                                                              |                                                 |
|---------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|
| Gene    | malignancies                              | Clinical features observed                                                                                                | solid tumors?                                                                  | Reference(s)                                    |
| ANKRD26 | AML, CML, and MDS                         | Platelet dysfunction and thrombocytopenia                                                                                 | Yes                                                                            | Sullivan et al. 2022                            |
| ATM     | CLL, lymphoid leukemias,<br>and lymphomas | Biallelic disruption causes ataxia telangiectasia                                                                         | Yes                                                                            | Stubbins et al. 2022                            |
| BRCA1   | HMs                                       | NR                                                                                                                        | Yes                                                                            | Li et al. 2022, Stubbins                        |
| BRCA2   | HMs                                       | NR                                                                                                                        | Yes                                                                            | et al. 2024                                     |
| CEBPA   | AML                                       | Patients whose AMLs are<br>treated with chemotherapy<br>only are at risk for second<br>independent AMLs in the<br>future. | NR                                                                             | Yuan et al. 2023                                |
| CHEK2   | HMs                                       | NR                                                                                                                        | Yes                                                                            | Stolarova et al. 2020,<br>Stubbins et al. 2022  |
| DDX41   | MMs                                       | Older age of MM<br>male > female                                                                                          | Yes, in some families,<br>with unclear<br>relationship to the<br>DDX41 variant | Makishima et al. 2023a,b                        |
| ETV6    | B cell ALL > MMs                          | Thrombocytopenia,<br>hyperchromatic<br>megakaryocytes                                                                     | Yes                                                                            | Feurstein & Godley 2017,<br>Wagener et al. 2023 |
| GATA2   | MMs                                       | Cytopenias, HPV, EBV,<br>pulmonary complications,<br>reproductive issues                                                  | NR                                                                             | Rajput & Arnold 2023,<br>Santiago et al. 2023   |
| IKZF1   | CVID, ALL                                 | High WBC count, not<br>sensitive to glucocorticoid<br>induction                                                           | NR                                                                             | Wagener et al. 2023                             |
| PAX5    | B cell ALL                                | NR                                                                                                                        | NR                                                                             | Fouad & Eid 2023,<br>Wagener et al. 2023        |
| RUNX1   | MM > T cell ALL                           | Platelet dysfunction and thrombocytopenia                                                                                 | Yes                                                                            | Wagener et al. 2023                             |
| SAMD9   | MMs                                       | MIRAGE syndrome                                                                                                           | NR                                                                             | Narumi 2022, Rudelius<br>et al. 2023            |
| SAMD9L  | MMs                                       | Cerebellar ataxia,<br>pancytopenia                                                                                        | NR                                                                             | Narumi 2022                                     |
| TP53    | Hypodiploid ALL and<br>MMs                | NR                                                                                                                        | Yes                                                                            | Abel et al. 2023                                |

|                     | Gene    | Predisposition to solid tumors? | Reference(s)                                                                                                                       |
|---------------------|---------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Myeloid             | SAMD9   | NR                              | Narumi 2022                                                                                                                        |
|                     | SAMD9L  | NR                              | Narumi 2022, Rudelius et al. 2023                                                                                                  |
|                     | ARID1A  | NR                              | Andrades et al. 2023                                                                                                               |
|                     | CBL     | NR                              | Hecht et al. 2022                                                                                                                  |
|                     | DIS3    | NR                              | Ohguchi & Ohguchi 2023                                                                                                             |
|                     | JAK2    | NR                              | Tefferi 2021, Tefferi & Barbui 2020                                                                                                |
|                     | KDM1A   | Yes                             | Zhang et al. 2021                                                                                                                  |
|                     | MBD4    | Yes                             | Palles et al. 2022                                                                                                                 |
|                     | MPL     | NR                              | Passamonti & Mora 2023                                                                                                             |
|                     | NF1     | Yes                             | Peduto et al. 2023                                                                                                                 |
|                     | PTPN11  | Yes                             | Christofides et al. 2023                                                                                                           |
|                     | RBBP6   | Yes                             | Bi et al. 2021, Wang et al. 2020                                                                                                   |
|                     | USP45   | NR                              | Kraft & Godley 2020                                                                                                                |
| Lymphoid            | CASP10  | Yes                             | Palmisani et al. 2023                                                                                                              |
|                     | CD27    | NR                              | Flieswasser et al. 2022, Palmisani et al. 2023                                                                                     |
|                     | CD70    | Yes                             | Flieswasser et al. 2022                                                                                                            |
|                     | CTLA4   | NR                              | López-Nevado et al. 2021                                                                                                           |
|                     | ITK     | NR                              | 1                                                                                                                                  |
|                     | MAGT1   | NR                              | Doi & Okada 2020                                                                                                                   |
|                     | MRTFA   | Yes                             | Reed et al. 2021                                                                                                                   |
|                     | TNFRSF9 | NR                              | Claus et al. 2023                                                                                                                  |
|                     | UNC13D  | NR                              | Sadeghi et al. 2022                                                                                                                |
| Myeloid/lymphoid    | BLM     | Yes                             | Ababou 2021                                                                                                                        |
|                     | CSF3R   | NR                              | Guastafierro et al. 2023, Szuber & Tefferi 2021                                                                                    |
|                     | RECQL4  | NR                              | Luong & Bernstein 2021                                                                                                             |
|                     | TET2    | NR                              | Belizaire et al. 2023                                                                                                              |
|                     | TP53    | Yes                             | Abel et al. 2023, George et al. 2021, R. Kim et al.<br>2023, Saiki & Ogawa 2023                                                    |
|                     | SH2B3   | Yes                             | Beghini et al. 2022                                                                                                                |
|                     | WAS     | Yes                             | Hsu 2023                                                                                                                           |
| Bone marrow failure | DNAJC21 | NR                              | Feurstein 2023                                                                                                                     |
|                     | ERCC6L2 | NR                              | Armes et al. 2022, Baccelli et al. 2023, Douglas<br>et al. 2019, Feurstein 2023, Hakkarainen et al.<br>2023, Shabanova et al. 2018 |
|                     | DCLRE1B | NR                              | Kermasson et al. 2022                                                                                                              |
|                     | SBDS    | NR                              | Kawashima et al. 2023, Spinetti et al. 2022                                                                                        |
|                     | EFL1    | NR                              | Kawashima et al. 2023                                                                                                              |
|                     | MECOM   | Yes                             | Lozano Chinga et al. 2023                                                                                                          |
|                     | NAF1    | Yes                             | Batista et al. 2022                                                                                                                |
|                     | NPM1    | NR                              | Khan & Gartel 2022                                                                                                                 |
|                     | RTEL1   | NR                              | Grill & Nandakumar 2021                                                                                                            |
|                     | SRP72   | NR                              | Faoro & Ataide 2021, Lovatel et al. 2023                                                                                           |

\_

\_

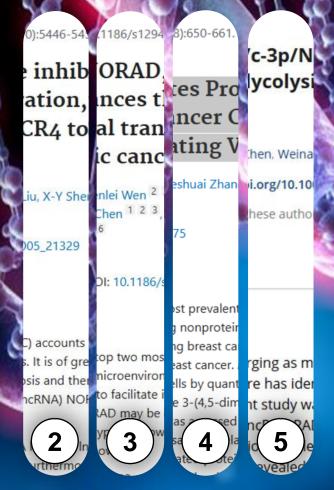
|                  |         | Predisposition to |                                         |  |
|------------------|---------|-------------------|-----------------------------------------|--|
|                  | Gene    | solid tumors?     | Reference(s)                            |  |
| Immunodeficiency | BTK     | Yes               | Ahn & Brown 2021, Shadman 2023          |  |
| syndromes        | CARD11  | NR                | Zhao et al. 2022                        |  |
|                  | CD40LG  | NR                | Tang et al. 2021                        |  |
|                  | CTPS1   | Yes               | Asnagli et al. 2023                     |  |
|                  | DOCK8   | NR                | Zhang et al. 2022                       |  |
|                  | NBN     | NR                | Otahalova et al. 2023                   |  |
|                  | PGM3    | Yes               | Fallahi et al. 2022                     |  |
|                  | PIK3CD  | Yes               | Ames et al. 2023                        |  |
|                  | PTEN    | Yes               | Álvarez-Garcia et al. 2019              |  |
|                  | RASGRP1 | NR                | López-Nevado et al. 2021                |  |
| Telomere biology | TERT    | Yes               | Byrjalsen et al. 2023, Kam et al. 2021  |  |
| disorder genes   | TERC    | Yes               | 7                                       |  |
|                  | DKC1    | Yes               | 7                                       |  |
|                  | ZCCHC8  | Yes               | Kam et al. 2021, Savage & Niewisch 1993 |  |
|                  | PARN    | Yes               | Batista et al. 2022, Kam et al. 2021    |  |
|                  | CTC1    | Yes               | Grill & Nandakumar 2021                 |  |
| Amyloidosis      | TTR     | NR                | Ioannou et al. 2023                     |  |
|                  | APOA1   | NR                | Jeraj et al. 2021                       |  |
|                  | APOA2   | NR                |                                         |  |
|                  | CST3    | NR                | Jiang et al. 2020                       |  |
|                  | FGA     | NR                | Chyra Kufova et al. 2018                |  |
|                  | GSN     | NR                | Potrč et al. 2021                       |  |
|                  | LYZ     | NR                | Chyra Kufova et al. 2018                |  |

Abbreviation: NR, not reported.

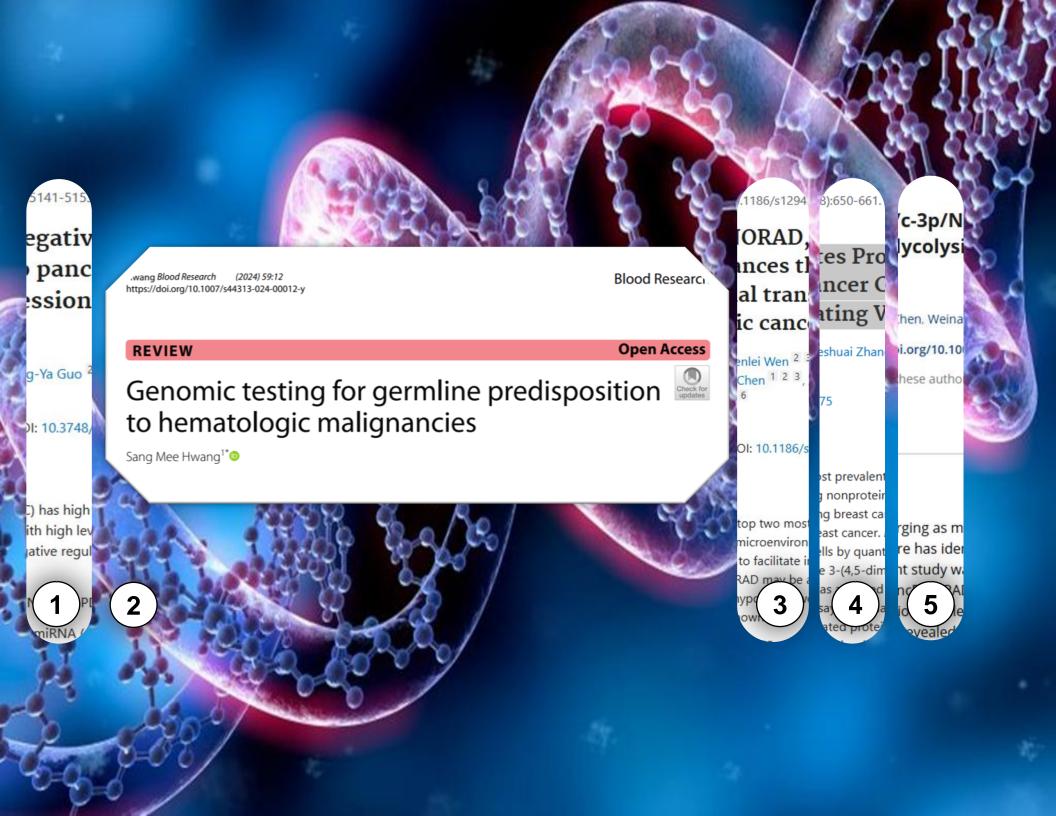


#### Germline Predisposition in Hematologic Malignancies: Testing, Management, and Implications

Lucy A. Godley, MD, PhD<sup>1</sup> (a); Courtney D. DiNardo, MD, MSCE<sup>2</sup>; and Kelly Bolton, MD, PhD<sup>3</sup>


DOI https://doi.org/10.1200/EDBK\_432218

#### **OVERVIEW**


Although numerous barriers for clinical germline cancer predisposition testing exist, the increasing recognition of deleterious germline DNA variants contributing to myeloid malignancy risk is yielding steady improvements in referrals for testing and testing availability. Many germline predisposition alleles are common in populations, and the increasing number of recognized disorders makes inherited myeloid malignancy risk an entity worthy of consideration for all patients regardless of age at diagnosis. Germline testing is facilitated by obtaining DNA from cultured skin fibroblasts or hair bulbs, and cascade testing is easily performed via buccal swab, saliva, or blood. Increasingly as diagnostic criteria and clinical management guidelines include germline myeloid malignancy predisposition, insurance companies recognize the value of testing and provide coverage. Once an individual is recognized to have a deleterious germline variant that confers risk for myeloid malignancies, a personalized cancer surveillance plan can be developed that incorporates screening for other cancer risk outside of the hematopoietic system and/or other organ pathology. The future may also include monitoring the development of clonal hematopoiesis, which is common for many of these cancer risk disorders and/or inclusion of strategies to delay or prevent progression to overt myeloid malignancy. As research continues to identify new myeloid predisposition disorders, we may soon recommend testing for these conditions for all patients diagnosed with a myeloid predisposition condition.

Accepted April 3, 2024 Published May 20, 2024

Am Soc Clin Oncol Educ Book 44:e432218 © 2024 by American Society of Clinical Oncology









#### egativ e inhib ation, panc ssion CR4 to

Liu, X-Y She g-Ya Guo

005\_21329 DI: 10.3748/

has high (C) accounts ith high leves. It is of gre ative regul sis and the ncRNA) NO





### ANNUAL REVIEWS

Annual Review of Cancer Biology Germline Predisposition to Hematopoietic Malignancies: An Overview

Yogameenakshi Haribabu, Emma Bhote, and Lucy A. Godley

Division of Hematology/Oncology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA; email: lucy.godley@northwestern.edu

### ANNUAL CONNECT

#### www.annualreviews.org

- · Download figures
- · Navigate cited references
- · Keyword search
- · Explore related articles
- · Share via email or social media

Annu. Rev. Cancer Biol. 2024. 8:309-29

The Annual Review of Cancer Biology is online at cancerbio.annualreviews.org

s://doi.org/10.1146/annurev-cancerbio-062822-

#### Keywords

germline, cancer predisposition, hematopoietic malignancies, bone marro failure

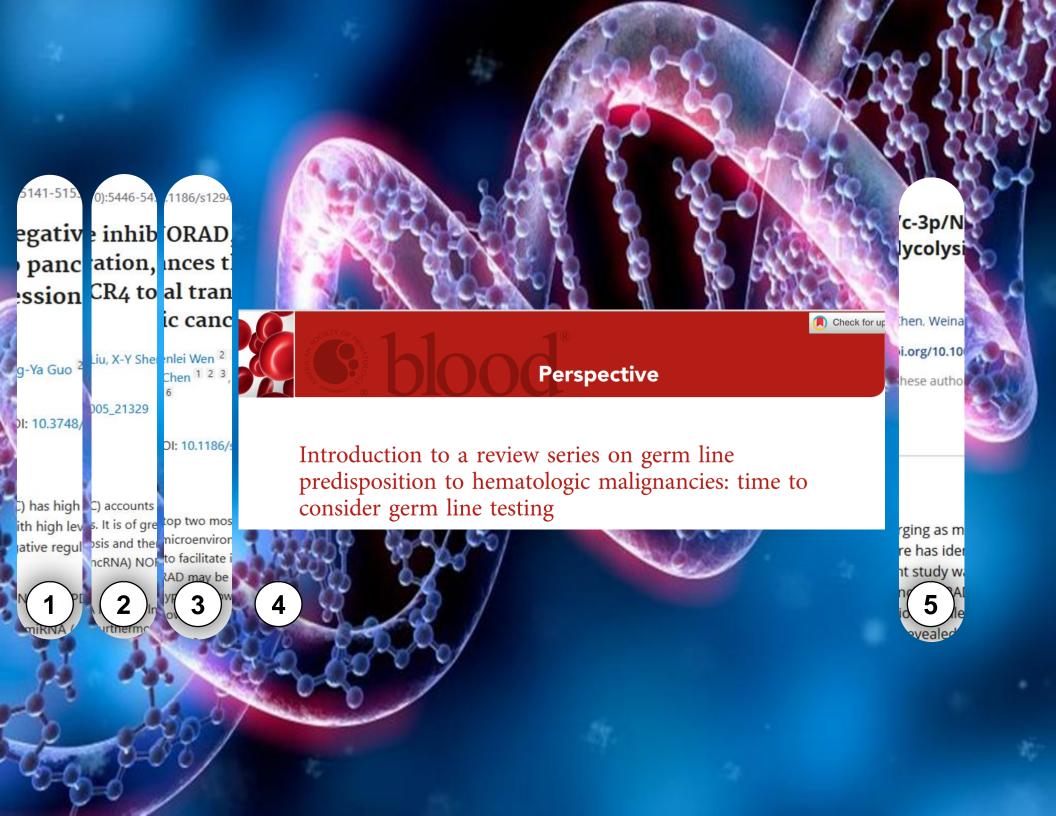
8):650-661

c-3p/N ycolys tes Pro

ncer C

hting V

hen, Weina


eshuai Zhan i.org/10.10

st prevalent nonproteir ng breast ca ast cancer. ells by quant e 3-(4,5-dim

rging as m

re has ider

nt study wa





d: 29 November 2022 | Accepted: 17 January 2023

OI: 10.1111/bjh.18675

#### GUIDELINE



Germline predisposition to haematological malignancies: Best practice consensus guidelines from the UK Cancer Genetics Group (UKCGG), CanGene-CanVar and the NHS England Haematological Oncology Working Group

| Beverley Speight <sup>1</sup>   Helen Hanson <sup>2,3</sup>   Clare Turnbull <sup>3,4</sup>   Steven Hardy <sup>5</sup> |
|-------------------------------------------------------------------------------------------------------------------------|
| James Drummond <sup>1</sup>   Jamshid Khorashad <sup>3</sup>   Christopher Wragg <sup>6</sup>   Paula Page <sup>7</sup> |
| Nicholas W. Parkin <sup>8</sup>   Ana Rio-Machin <sup>9</sup>   Jude Fitzgibbon <sup>9</sup>                            |
| Austin Gladston Kulasekararaj <sup>10,11,12</sup>   Angela Hamblin <sup>13</sup>   Polly Talley <sup>14,15</sup>        |
| Terri P. McVeigh <sup>3,4</sup>   Katie Snape <sup>2,10</sup>   on behalf of Consensus Meeting Attendees                |

<sup>&</sup>lt;sup>1</sup>East Anglian Medical Genetics Service, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK

<sup>&</sup>lt;sup>2</sup>South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK

<sup>3</sup>Institute of Cancer Research, Sutton, London, UK

<sup>&</sup>lt;sup>4</sup>Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK

<sup>&</sup>lt;sup>5</sup>National Disease Registration Service, NHS Digital, London, UK

<sup>&</sup>lt;sup>6</sup>South West Genomics Laboratory Hub, Bristol Genetics Laboratory, North Bristol NHS Trust, Pathology Building, Southmead Hospital, Bristol, UK

<sup>&</sup>lt;sup>7</sup>West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK

<sup>&</sup>lt;sup>8</sup>Molecular Pathology Laboratory, Synnovis Analytics, King's College Hospital, London, UK

<sup>&</sup>lt;sup>9</sup>Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK

<sup>10</sup> King's College Hospital NHS Foundation Trust, London, UK

<sup>&</sup>lt;sup>11</sup>National Institute for Health and Care Research and Wellcome King's Research Facility, London, UK

<sup>12</sup>King's College London, London, UK

<sup>&</sup>lt;sup>13</sup>Oxford University Hospitals NHS Foundation Trust and Central and South Genomic Laboratory Hub, Oxford, UK

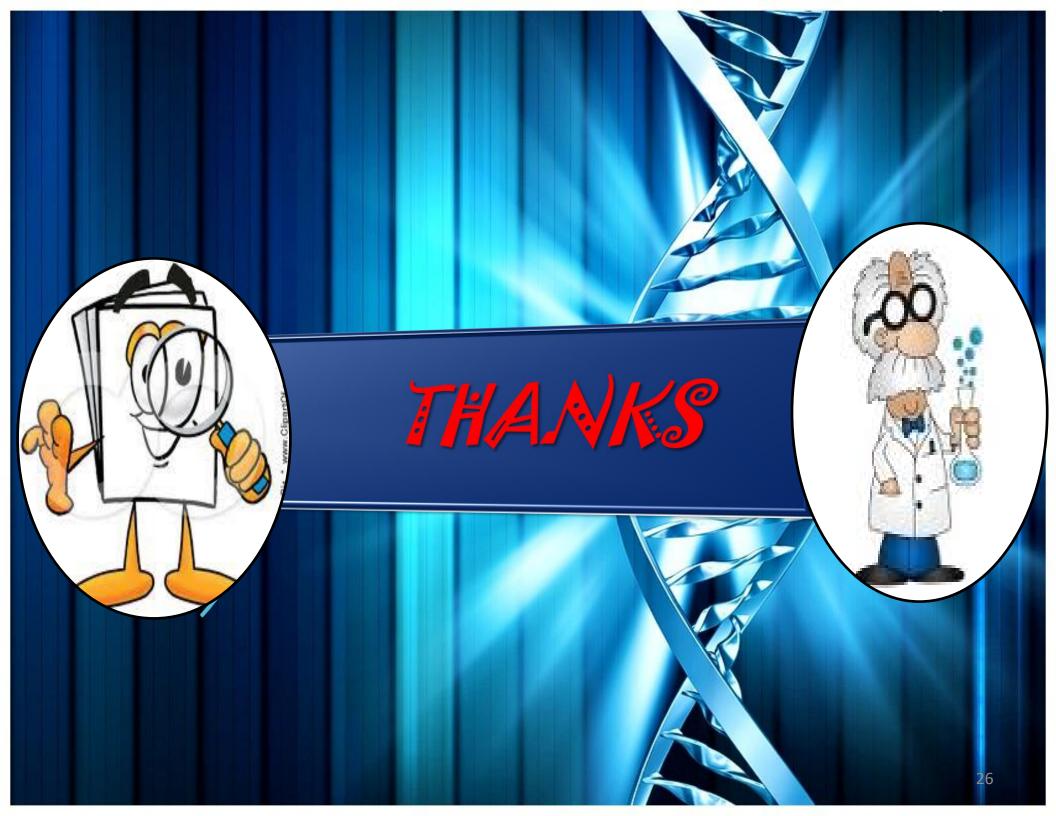
<sup>14</sup>Genomics Unit, NHS UK and NHS Improvement, Leeds, UK

<sup>&</sup>lt;sup>15</sup>North East and Yorkshire Genomic Laboratory Hub, Leeds, UK



# **Donor Selection**

#### Donor derived leukemia:


while one significant **motivator to enroll** in unrelated donor <u>registries</u> is the presence of leukemia in a family member.

- These risks are primarily mitigated by using questionnaires as universal screening for germline predisposition syndromes is not available for volunteer unrelated donors.
- However, in the future, given the availability of high-throughput HLAtyping and sequencing, the feasibility of screening for germline predisposition may be explored, particularly as the safety of mobilization using GCSF in the context of an occult germline mutation is unknown.

### **Donor Selection**

#### Recommendations

- It is important to avoid inadvertently using a carrier relative as a donor. This requires a high index of suspicion, and appropriate, timely, targeted testing of patients and their potential family donors.<sup>2,3</sup>
- Where the predictive testing of a germline variant in potential donor relatives has been undertaken urgently to inform BMT decisions, matched relatives shown NOT to carry the variant would usually be prioritised over matched carrier relatives.<sup>1</sup>
- Where predictive testing of a germline variant in potential donor relatives has been undertaken urgently to inform BMT decisions, a relative shown to be a carrier would not usually be considered as a potential donor unless other options were limited.<sup>1</sup>
- If concerned about a strong family history/syndromic features in the absence of a confirmed genetic diagnosis, it would be best practice to discuss in the MDT meeting to document the history and decide whether related donors should be prioritised above unrelated donors.
- Where all related matched donors are either carriers or decline testing, careful assessment of risks and benefits of an unrelated donor versus a carrier family member/untested family member requires discussion at a MDT meeting with access to expert opinion and consideration on a gene-specific basis.<sup>1</sup>



### Table of Contents

Telomere length measurement of peripheral blood lymphocytes by FlowFISH (STS:less than first percentile, highly sensitive and specific for an STS diagnosis in young patients with AA), (age <40 y or those proceeding to BMT), individuals with pathogenic telomere gene mutations can have lengths in the normal range. Short telomeres can be seen in acquired AA with reduced stem cell reserve.

Chromosome breakage analysis on peripheral blood (age <40 y or those proceeding to BMT), Evaluate for FA Conventional karyotyping, Most often normal in AA, no adverse: del13q, trisomy 8, loss of heterozygosity of short arm of chromosome 6, **Monosomy 7**, especially in young patients, increases suspicion for an IBMFD.

Inherited BMF gene panel: Patients aged <40 y or if clinical picture or screening tests warrant. skin

fibroblasts.